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1 Introduction

Recently, my statistics class at school gave me a peculiar assignment: to build a
probability based mock-carnival-game designed to rip off anyone that played it.
Though my knee-jerk reaction was to think of slot-machines and dice, I wanted
to see if there was a way to create a game allowing for some player strategy, but
which would ultimately have a probabilistic outcome. In the deepest recesses of
my memory, I recalled some sort of vague game that had something to do with
removing objects from various piles. Not recalling anything else about its rules
or solution, I decided to fill in the gaps with rules convenient enough to make
for a fun carnival game. The basic rules ended up something like this:

• A random number of stacks, would be chosen (between 3 and 5 for practical
purposes, but theoretically anything).

• Each stack would be composed of a random number of plastic cups (be-
tween 3 and 11 for practical purposes).

• Players would take turns making moves on the configuration, with each
move consisting of picking a stack and removing either one or two cups
from it.

• The first player who is unable to make a move loses, and their opponent
wins.

Little did I know, I had unintentionally created a simplified version of Nim, a
famous (usually theoretical) game. In any case, I was soon busy trying to solve
my simplified game, and what follows are my results.

2 Winning Condition/Strategy

Consider a row of n stacks of cups. Define the sequence C = {C1, C2, . . . , Cn},
where Ci is the number of cups in the ith stack. We say that a term in C is
a k-residue if it leaves a remainder of k when divided by 3. Furthermore, we
denote the number of k-residues in a sequence C as NC(k). Finally, we call the
sequence C ”interesting” if both NC(1) and NC(2) are even. In any other case,
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we call the sequence ”boring.”

Lemma 1: If C is an interesting sequence, any move on it will yield a bor-
ing sequence.

Proof : Since moves consist of removing either 1 or 2 cups from a given
stack, any move is guaranteed to alter the residue of its stack mod 3. Suppose
a j-residue gets converted to a k-residue, where j 6= k. Since the only possible
residues are 0, 1 and 2, at least one of j or k must be either 1 or 2. Observe that
our move flips the parity of both NC(j) and NC(k). Thus, either the number
of 1-residues or the number of 2-residues is no longer even (or both), meaning
that the new sequence is boring.

Lemma 2: If C is a boring sequence, there is always some move that con-
verts it into an interesting sequence.

Proof : By definition, any boring sequence falls into one of the following
three categories:

• NC(1) is odd and NC(2) is even. In this case, we can remove one cup from
a 1-residue, converting it to a 0-residue and making NC(1) even.

• NC(1) is even and NC(2) is even. Similar to the last case, we can remove
two cups from a 2-residue, converting it to a 0-residue and making NC(2)
even.

• Both NC(1) and NC(2) are odd. Here we can remove one cup from a
2-residue, converting it to a 1-residue. This decreases NC(2) by one and
increases NC(1) by one, making both even and resulting in a boring se-
quence.

It is important to note that for any k, NC(k) being odd implies that it is nonzero,
meaning that at least one k-residue exists. This ensures that all the moves de-
scribed above can indeed happen.

Theorem: Player 1 will win if and only if they start with a boring sequence.

Proof : If Player 1 starts with a boring sequence, they can always force
Player 2 into an interesting sequence by Lemma 2. On the next move, Player 2
will always return back a boring sequence to Player 1, due to Lemma 1. This
pattern continues, with Player 1 always holding a boring sequence and Player
2 always holding an interesting sequence. Thus, Player 2 will eventually lose,
because the losing condition C = {0, 0, . . . , 0} is itself an interesting sequence.
Otherwise, if Player 1 starts with an interesting sequence, they will be forced
to give a boring sequence to Player 2, and the pattern continues in reverse until
Player 1 loses.
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3 Probability of Winning

Recall that the number of cups in each stack, i.e. each Ci, is selected randomly
from some range. As we have seen, the initial configuration of C entirely de-
termines the outcome of the game. Thus, we can consider the probability with
which the random selection of C leads to a win for the first player, i.e. the
probability with which C is a boring sequence.

In our case, each Ci was picked uniformly and randomly between 3 and 11,
inclusive. As we have seen, a sequence’s characterization as boring or interest-
ing only depends on the remainder of its terms mod 3, so we effectively only
need to consider sequences consisting of 0, 1 and 2. Our range of 3 to 11 en-
sures that each remainder (and by extension each sequence of remainders) is
equally likely to be picked. Thus, we can simply find the total number of bor-
ing remainder-sequences of with length n, and divide by the total number of
remainder-sequences of length n, the latter of which is clearly 3n.

Though there are certainly more algebra-centered proofs, here I will present
a more combinatorially-oriented approach.

Lemma 3: If S is a nonempty set, then the number of odd-sized subsets of
S equals the number of even-sized subsets of S.

Proof : Using the binomial theorem, we see that

0 = 0n = (1− 1)n =

(
n

0

)
−
(
n

1

)
+

(
n

2

)
−

(
n

3

)
+

(
n

4

)
. . .

where the even terms are added and the odd terms are subtracted. Moving all
the odd terms to the left side, we see that their sum equals the sum of the even
terms, which is equivalent to our lemma.

Our goal is to find the number of boring sequences, i.e. sequences with both
an even number of 1s and an even number of 2s. We start by finding the com-
plement: the number of interesting sequences. Define E1 as the number of
sequences with an even number of 1s, and O1 as the number of sequences with
an odd number of 1s. Suppose that there are a total of k zeroes in the sequence:
we now choose a subset of the remaining n− k spots to place 1s. By Lemma 3,
we see that the number of ways to fill an even amount of 1s equals the number
of ways to fill an odd amount of 1s for any choice of k, but with one exception:
when k = n, all terms in the sequence are 0, leaving no spots to add 1s and
resulting in an even count. Thus, E1 is exactly one greater than O1. Since
E1 + O1 = 3n, we see that

E1 =
3n + 1

2
.
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Now, we restrict our attention to these sequences in E1, and apply similar
reasoning for the 2s. Define E2 to be the number of sequences in E1 that also
have an even number of 2s, and O2 as the number of sequences in E1 with an
odd number of 2s. Suppose our sequence already has m 1s, where m is an even
number. We choose a subset of the remaining n −m terms to fill with 2s. By
Lemma 3, the number of ways to fill an even number of 2s equals the number
of ways to fill an odd number of 2s for almost any m. The exception cases are
are as follows:

• If n is even, then there is a possibility of m equalling n. If so, there will
be no space left for the 2s, resulting in an even count. Thus, E2 will be
one greater than O2.

• If n is odd, then m can never equal n, as m is restricted to be even. Thus,
there are no exceptions in this case, and E2 = O2.

In summary, E2 − O2 = 1 for even n, and E2 − O2 = 0 for odd n. We can
encode this into a single formula as follows:

E2 −O2 =
1 + (−1)n

2
.

By definition, we also have

E2 + O2 = E1 =
3n + 1

2
.

We solve this system of linear equations and finally get

E2 =
3n + (−1)n + 2

4
.

By definition, E2 represents the number of interesting sequences, so the number
of boring sequences is

3n − E2 =

(
3

4

)
3n − 2 + (−1)n

4
.

Finally, we divide out by the total number of sequences, 3n, and we arrive
at our formula for the Player 1’s win probability for n stacks:

3

4
− 2 + (−1)n

4 ∗ 3n
.

If made into an actual carnival game, the house could take advantage of the
above formula to rig the playing price, ensuring they always have a positive
expected monetary gain, even if the opponent plays perfectly (which would be
unlikely for most carnival-goers). In the next installment of this post, I will
discuss how I later tackled problem of solving Nim in its most general case,
where players are allowed to remove any number of cups from a stack.
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